Model-based clustering for multivariate partial ranking data
نویسندگان
چکیده
منابع مشابه
Model-based clustering for multivariate partial ranking data
This paper proposes the first model-based clustering algorithm dedicated to multivariate partial ranking data. This is an extension of the Insertion Sorting Rank (isr) model for ranking data, which is a meaningful and effective model obtained by modelling the ranking generating process assumed to be a sorting algorithm. The heterogeneity of the rank population is modelled by a mixture of isr, w...
متن کاملModel-based clustering for multivariate functional data
This paper proposes the first model-based clustering algorithm for multivariate functional data. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal components, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into accoun...
متن کاملRankcluster: An R Package for clustering multivariate partial ranking
Rankcluster is the first R package dedicated to ranking data. This package proposes modelling and clustering tools for ranking data, potentially multivariate and partial. Ranking data are modelled by the Insertion Sorting Rank (isr) model, which is a meaningful model parametrized by a central ranking and a dispersion parameter. A conditional independence assumption allows to take into account m...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملProbabilistic Model-based Clustering of Multivariate and Sequential Data
Probabilistic model-based clustering, based on nite mixtures of multivariate models, is a useful framework for clustering data in a statistical context. This general framework can be directly extended to clustering of sequential data, based on nite mixtures of sequential models. In this paper we consider the problem of tting mixture models where both multivariate and sequential observations are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2014
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2014.02.011